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ABSTRACT 

Today’s investment decisions in large-scale onshore wind projects in Germany are no 

longer determined only by the investment’s economic benefit, but also by concerns 

associated to social acceptance. Despite a mostly positive attitude towards the 

expansion of wind power, local public concerns often stem from the belief that the 

proximity to large-scale wind farms may lead to a decrease in property prices. In 

particular, the change in landscape caused by the construction of a wind farm may have 

an adverse impact on the view from some properties, and thus may negatively affect 

their price. To investigate the potential devaluation of properties in Germany due to 

wind farms, we use a quasi-experimental technique and apply a spatial difference-in-

differences approach to various wind farm sites in the federal state of North Rhine-

Westphalia. We adopt a quantitative visual impact assessment approach to account for 

the adverse environmental effects caused by the wind turbines. To properly account for 

spatial dependence and unobserved variables biases, we apply augmented spatial 

econometric models. The estimates indicate that the asking price for properties whose 

view was strongly affected by the construction of wind turbines decreased by about 10-

17%. In contrast, properties with a minor or marginal view on the wind turbines 

experienced no devaluation. 

Keywords: Wind power, Difference-in-differences, Visual impact, Spatial dependence 
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I. INTRODUCTION 

Over the last two decades, fostered by strong financial incentives, wind power in Germany 

has seen a rapid market diffusion. Guaranteed feed-in tariffs for renewable energies such as 

wind power often rewarded investors in these technologies with substantial economic returns. 

However, today’s investment decisions in large-scale onshore wind power projects in 

Germany primarily are no longer determined by the investment’s economic benefit, but also 

by the mitigation of public concerns and thereby the increase of social acceptance. Despite a 

mostly positive attitude towards the expansion of wind power, local public concerns often 

stem from the belief that the proximity to wind turbines diminishes property prices. 

The proximity to a wind farm site may lead to various types of locally adverse effects, such 

as noise, sound pressure, electromagnetic interference, shadow flicker, as well as visual and 

scenic intrusion (Manwell et al., 2002). While noise, sound pressure, electromagnetic 

inference, and shadow flicker effects only occur in the immediate proximity to the wind farm 

(mainly within the first few hundred meters to the site), visual and scenic effects can have 

strong influences over considerable distances. Generally speaking, among the various locally 

adverse effects caused by wind farms, landscape and visual effects are considered to be the 

most dominant and relevant factors triggering public concerns (Andolina et al., 1998; Benson, 

2005; Gipe, 2002; Manwell  et al., 2002; Miller et al., 2005; van Beek et al., 1998). Wind 

farms, sited in predominantly rural areas, are usually visible from considerable distances, as 

these constructions are often significantly taller than any other object in the existing landscape 

(Miller et al., 2005). In addition, the average hub height and rotor diameter of wind turbines 

have increased tremendously over the last years, causing further changes in the landscape of 

the affected regions. The current trend of repowering (i.e. substituting older facilities by 

newer, larger, and more efficient ones) will continue to foster this development. 

The visual impact threshold distance, i.e. the maximum distance from which a wind farm is 

visible, can be up to about 30 to 40 kilometers, depending on the terrain characteristics, 

landscape background, and weather conditions (Bishop, 2002; Sullivan et al., 2012). 

However, regarding the determination of thresholds of potential visual wind farm impacts, it 

is important to note that visibility cannot be regarded as a binary factor (i.e. only indicating if 

a wind farm is visible or not), but that the significance of the visual impact can vary within a 

spectrum that ranges from uninformed detection of the wind farm to strong visual disturbance 

(Bishop, 2002).
1
 Therefore, in order to estimate the visual impact of a wind farm for different 

locations in a specific region, visibility has to be treated as a function of wind farm size and 

shape in relation to the observer’s distance, the view angle to the object, the object’s contrast 

in relation to its background, and atmospheric scattering (Benson, 2005; Bishop, 2002; Bishop 

and Miller, 2007; Hurtado et al., 2004; Manchado et al., 2013; Molina-Ruiz et al., 2011; 

Möller, 2006). Even if wind turbines are visible from distances of up to 30 or 40 kilometers 

under certain circumstances, usually the significance of a visual impact can be expected to 

drop substantially beyond distances in excess of two to three kilometers (Bishop, 2002; 

Sullivan et al., 2012). Hence, visual impacts tend to be extremely complex and difficult to 

estimate quantitatively (Möller, 2006). Nonetheless, the literature on visual impact assessment 

                                                 
1
 Bishop (2002) defines four visibility categories: uninformed detection, uninformed recognition, informed 

recognition, and informed visual impact. For further information on visual thresholds for detection, recognition, 

and visual impact, see also Shang and Bishop (2000). 
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of wind turbines provides a few studies that focus on the development and application of 

quantitative measures of visual impacts (Hurtado et al., 2004; Kokologos et al., 2014; 

Manchado et al., 2013; Möller, 2006; Torres-Sibille et al., 2009). 

As location is one of the most important determinants of a property’s value, the proximity 

to environmental amenities and disamenities in the surroundings, and hence the associated 

preferences of the consumers, are supposed to be indirectly reflected in its value. The 

assessment and quantification of changes in the locational attributes of a given property (e.g. 

due to the construction of a wind farm in the proximity) can be implemented by means of the 

hedonic pricing method, which allows for the extraction of the implicit price of one attribute 

from the overall price of the property (Parmeter and Pope, 2013; Rosen, 1974). Applied to the 

case where the change in the locational attributes of a property is caused by the construction 

of a wind farm, the extraction of the attributes’ implicit price demands for a suitable and 

differentiated representation of the wind farms’ influence on the location of the property. As 

the impact on landscape and view can be considered as the most dominant wind farm effect, 

studies aiming at a precise and reliable estimation of potential local impacts of wind farms on 

property values in the surroundings should rely on an explicit incorporation of visibility 

effects. Still, most studies only apply simple distance measures as proxies for all kinds of 

local wind farm effects, and do not actually account for more precise estimates of actual 

visibility changes. 

The aim of this study is to investigate local visual impacts of wind farms on the 

development of property prices by explicitly implementing direct visibility estimates in the 

analysis. Four large-scale wind farm sites located in the immediate vicinity of three medium-

sized cities in the federal state of North Rhine-Westphalia (NRW), Germany, are investigated. 

Within the framework of the hedonic pricing method, we apply a spatial difference-in-

differences (DID) model that allows for a comparison of the observed changes in the values of 

the treated properties against the values of a control group. Applied to the case of wind farm 

construction, the treatment and control groups are defined according to various wind farm 

visibility criteria (see section II). To assess the visual impacts of wind farms, we partially 

adapt the quantitative visual impact measurement approach proposed by Hurtado et al. (2004) 

and develop a criteria-based ‘Visual Impact Level’ (VIL) ranking incorporating the magnitude 

of visibility (i.e. the number of visible turbines), the distance to the wind farm, and the view 

angle from the center of the property.
2
 Thanks to the implementation of a quantitative criteria-

based approach considering the relation of distance, magnitude of visibility, and view angle, 

we improve the current common practice of applying qualitative-subjective evaluations of 

visual impacts in hedonic pricing analysis. More specifically, the impact of the different 

visibility levels on the property values is estimated by means of a Spatial Fixed Effects model, 

a Spatial Auto-Regressive Lag Model with an Auto-Regressive Error Term (SAC/SARAR)
3
, 

and a Spatial Durbin Error Model (SDEM). 

To date, the number of publications that investigate the impact of wind farms on property 

values by means of hedonic pricing methods is still limited. Despite the scarcity of 

                                                 
2
 Due to limited data availability and computational issues, accounting for weather conditions, atmospheric 

scattering, and background contrasting is beyond the scope of this analysis. 
3
 In the literature, the spatial auto-regressive lag model with an auto-regressive error term is frequently labelled 

as SAC (LeSage and Pace, 2009) or SARAR (Kelejian and Prucha, 1998). 
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publications, there is considerable variety of approaches regarding the selection of suitable 

variables (particularly with respect to the choice of the most appropriate proxy for wind farm 

impacts) and estimation techniques (mainly with regard to possible omitted variable biases 

and spatial dependence). 

Being among the earliest published studies on this topic, Sims and Dent (2007) as well as 

Sims et al. (2008) investigate the impacts of wind farms on house prices in Cornwall, UK. 

Sims and Dent (2007) apply a simplistic regression approach that does not control for any 

spatial effects in the data. Various distance zone dummies are used as proxies for wind farm 

impacts. Furthermore, the authors consider only property sales that took place after the 

construction of the wind farm, which is by far the most problematic issue. Sims et al. (2008), 

in contrast, consider the problem of spatial relationships in the data by using spatial fixed 

effects. Furthermore, they incorporate some dummy variables indicating visibility. They do 

so, however, without considering any actual relation to distance or extent of visibility. The 

data base is again rather small (199 property sales), though it considers transactions over a 

longer time interval. Overall, both Sims and Dent (2007) and Sims et al. (2008) could not 

obtain any significant evidence of the effects investigated, though this outcome might have 

been strongly influenced by the limitations in the analysis carried out. 

Hoen et al. (2009, 2011) and Hoen et al. (2013) analyze wind farm impacts on various sites 

in the US and provide by far the most comprehensive studies currently available in the 

literature. In an article distilled from their project report (Hoen et al., 2009), Hoen et al. 

(2011) investigate about 7,500 single-family house sales in the proximity of 24 large-scale 

wind farm sites spread across nine US states. In their study, they explicitly focus on visibility 

effects and develop an ordered qualitative visual impact ranking system that incorporates 

distance to the turbines, the number of turbines visible, as well as the view angle. Within a 

standard hedonic framework, different model specifications were applied, also accounting for 

spatial autocorrelation via spatial fixed effects and nearest neighbor weights. According to the 

results obtained, no evidence was found for visual impacts or other wind farm-related effects 

in the considered study areas. Hoen et al. (2013) further improved the two aforementioned 

studies by applying a DID framework with spatial econometric methods in order to control for 

spatial dependence. With more than 50,000 property sales from 1996 to 2011 in a 10 miles 

radius around 67 wind farm sites in nine US states, this report is to date one of the most 

extensive and well-designed analyses. However, instead of further developing a visual impact 

ranking based on quantitative measures, rather than only qualitative ones, the authors simply 

used distance ranges as proxies for visual influences and other local impacts. Furthermore, 

even though spatial econometric techniques were applied, it is not clear how the spatial 

weight matrix was estimated. Similar to the studies before, they found no statistically 

significant wind farm construction impacts on property values. 

A similar approach was recently adopted in a report by Atkinson-Palombo and Hoen 

(2014), who investigate potential wind farm impacts on properties in the state of 

Massachusetts, US. The study specifically focuses on noise and shadow flicker effects within 

half a mile around the considered properties in more densely populated urban areas. The 

extensive dataset accounted for 122,000 home sales. Again, a simple distance variable 

controlled for possible local effects. Spatial relationships in the data were addressed via 

spatial fixed effects and nearest neighbor weights. The results obtained did not provide any 
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significant evidence for local wind farm effects caused by the construction or announcement 

of the projects.  

Sunak and Madlener (2012) investigate the impacts of wind farms on property values in 

Germany by means of different spatial fixed effects specifications and a locally weighted 

regression model. Besides the estimation of wind farm impacts via a continuous distance 

variable as well as distance range dummies, visibility is explicitly analyzed in a fixed 

viewshed effect specification and a locally weighted regression model. The dataset includes 

1,405 observations. Overall, some evidence was found for negative impacts on property prices 

in cause of the wind farm construction.  

Heintzelman and Tuttle (2012) provide a wind farm analysis in a standard hedonic 

framework and apply a spatial fixed effects specification. Wind farm effects are incorporated 

in the models solely using continuous distance and distance range variables, whereas visibility 

is not considered. Including about 11,000 property sales occurred in northern New York, US, 

the results indicate statistically significant negative impacts on property prices.  

Most recently, Lang et al. (2014) conducted an analysis on the impact of 12 single turbines 

on property values (48,554 observations) in 10 different sites in Rhode Island, US. Applying a 

DID framework, they incorporate various distance bands around the turbine sites in order to 

investigate construction and announcement effects. In a further specification of the model, 

they apply a qualitative visual impact ranking. Spatial relationships in the data are addressed 

by the implementation of spatial fixed effects, whereas spatial dependence is not considered 

in their analysis. Although the modeling design and the econometric implementation are 

elaborate and sound, there are some drawbacks associated to the study objects chosen and the 

wind farm impact proxies applied. Firstly, in contrast to all other studies that investigate the 

impacts of large-scale wind farms on surrounding properties, Lang et al. (2014) only focus on 

single and relatively small turbines. This might affect the relevance of their results and 

conclusions in comparison to studies that consider large-scale farms (e.g. with more than 15 

or 20 turbines), which possibly have a stronger impact on landscape and view and thus 

property prices, ceteris paribus. Secondly, even though visual impacts are considered in one 

model specification, the visual impact classification, based on the subjective opinion of one 

individual that conducted all the field visits, is rather intransparent. A more systematic 

approach to rank the data, e.g. relating distance and extent of visibility, would have benefited 

the study.  

Table 1 provides an overview of the studies discussed and their main features. In summary, 

main weaknesses that can be identified in such studies are related to (1) an insufficient 

representation of wind farm impacts through simple distance measures that are used as 

proxies for visual impacts, (2) a rarely systematic and mostly subjective determination of 

visual impacts (if at all incorporated), and (3) a missing explicit account of spatial dependence 

by means of spatial econometric methods. We address (1) and (2) through the systematic 

determination of different VILs. The defined VILs are based on viewshed analyses that use 

high-resolution 3D data with an accuracy of one meter, and that include, in a digital surface 

model, all visible elements in the environment, such as heights, slopes, vegetation, and 

buildings. We approach (3) by applying a Spatial Fixed Effects Model, a SAC/SARAR, and a 

SDEM in the DID framework (see section III). 

 



6 

 

TABLE 1: Overview of studies discussed and their features 

 Study 

area 
N 

Time 

period 

Object of 

study 

Model 

framework 

Spatial 

methods 

Wind farm 

effect proxy 

Impact 

estimation 

Sims and 

Dent (2007) 
UK 919 2000-2004 Wind farm 

Standard 

hedonic 
- Distance Negative 

Sims et al. 

(2008) 
UK 119 2000-2007 Wind farm 

Standard 

hedonic 
SFE View None 

Hoen et al.  

(2009, 2011) 
US 7,459 1996-2007 Wind farm 

Standard 

hedonic 

SFE, 

Spatial lag 

Qual. view 

ranking 
None 

Hoen et al. 

(2013) 
US 51,276 1996-2011 Wind farm DID 

SFE, 

SARAR 
Distance None 

Atkinson-

Palombo and 

Hoen (2014) 

US 122,198 1998-2012 Wind farm 
Standard 

hedonic 

SFE, 

Spatial lag 
Distance None 

Sunak and 

Madlener 

(2012) 

GER 1,405 1992-2010 Wind farm 
Standard 

hedonic 

SFE, 

LWR 

Distance + 

View 
Negative 

Heintzelman 

and Tuttle 

(2012) 

US 11,369 2000-2009 Wind farm 
Standard 

hedonic 
SFE Distance Negative 

Lang et al. 

(2014) 
US 48,554 2000-2013 

Single 

turbines 
DID SFE 

 

Distance + 

Qual. view 

ranking 

None 

 

Additionally, while most studies focus on wind farm effects in the US, our research is one 

of the first comprehensive analyses for Europe and, more specifically, Germany. The insights 

gained from our analysis may thus be of particular relevance, also in light of differences in the 

property market conditions and spatial dimensions between Germany and the US, which 

imply that the results obtained cannot simply be assumed to hold true irrespective of the 

region considered. 

The remainder of this paper is structured as follows. Section II introduces the visual impact 

assessment, which is then incorporated into the spatial DID framework presented in section 

III. Section IV presents the results obtained from the different model specifications, and 

section V concludes by summarizing the main insights from our analysis. 

 

II. VISUAL IMPACT ASSESSMENT 

Visual Impact Levels 

As simple distance measures (i.e. grouping property sales according to their distance to the 

nearest turbine) and binary visibility variables (i.e., only indicating if a wind turbine is visible 

or not) can only provide a crude representation of visual effects caused by wind turbines, the 

implementation of a precisely measured and representative proxy for local visibility effects is 
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crucial for hedonic pricing studies that aim at estimating potential impacts of wind farms on 

property values.
 4

    

In order to incorporate different levels of visual impact, we adopt the quantitative, criteria-

based visual impact assessment methodology originally provided by Hurtado et al. (2004). 

This approach was proposed to quantify the visual impact of wind farms for site pre-

assessment and to evaluate the overall visual impact across whole regions. We apply and 

adapt the coefficient-based measurements to our study case, hence determining the VIL for 

each considered property in our data set. In addition, we validate the method by considering 

other proposed approaches and findings in this field (Bishop, 2002; de Vries et al., 2012; 

Torres-Sibille et al., 2009). The applied visual impact assessment method is based on four 

criteria.  

The visibility of the wind farm from the city area a is given by   

1

n i

i

x

F
a

n



 
 
 


, 

where n is the number of areas inside the city/city district with different views of the wind 

farm, xi is the number of visible turbines from this considered area i, and F is the total number 

of turbines in the wind farm. The visibility of the city area from the wind farm b (independent 

from a) is determined by 

number of properties visible from the wind farm

total number of properties in the city district
b  .  

The extent of visibility for each location j is specified by 

j jc x v  , 

where xj provides the criterion for the number of turbines visible from location j (i.e. each 

property), and vj defines the criterion for the different view angles to the wind farm from 

location j (see Table 2). 

TABLE 2: Distribution of the coefficients for criteria xj (number of visible turbines) and vj (view angle) 

Coefficients Number of visible turbines (xj) View angle (vj) 

0.20 - Longitudinal 

0.50 1-3 Diagonal 

0.90 4-10 - 

1.00 11-20 Frontal 

1.05 21-30 - 

1.10 > 30 - 

Source: Hurtado et al (2004) 

                                                 
4
 In this paper, we do not explicitly investigate the impacts of noise, sound pressure, electromagnetic 

interference, and shadow flicker on property values. As indicated above, the impact of those effects substantially 

diminishes in excess of about 500 meters to the turbines (Hau, 2006; Rogers et al., 2006) and can therefore be 

safely neglected, as in our case the minimum distance between a property and a wind turbine is 726 meters. 

[1] 

[2] 

[3] 



8 

 

Finally, Table 3 provides the criterion for the distance of the properties to the turbines of 

the nearest wind farm (coefficients for criterion d). 

TABLE 3: Distribution of the coefficients for criterion d according to the distance to the nearest turbine 

Distance m 

[m] 
Coefficients for criterion d 

m < 500 1.00 

500 < m < 6000 1.05 – 0.0002 × m 

m > 6000 (if turbine is visible) 0.10 

Source: Hurtado et al. (2004) 

While the criteria a and b provide a more general characterization of the regional context, 

and indicate the overall relation of the wind farm to the different cities and city districts, 

respectively, criteria c and d measure the exact influence on the single property. Even though 

the main focus lies on the measurement of visual impacts at the single property level (through 

c and d), a rather general weighting of different regional effects through criteria a and b is 

also important. This needs to be accounted for, as the different cities and city districts in our 

study area are subject to substantially varying wind farm effects, given that, among other 

things, the southern part of the study area is affected by about 50 turbines overall and the 

northern area only by nine (see Figure 2). Consolidating the defined criteria for the visual 

impact assessment, the visual impact VI for the different properties in the study area is given 

by 

VI a b c d    . 

By applying the procedure described, a visual impact coefficient between 0 (no impact) 

and 1 (highest impact) was assigned to each property in the dataset. In order to validate the 

applied criteria and coefficients, we compared them to those used in other visual impact 

assessment studies in the literature. Overall, we found that the defined criteria and their 

coefficients largely correspond to those applied in other studies. For instance, de Vries et al. 

(2012) conducted a survey based on photographs of different scenic situations involving the 

siting of wind farms, where the visual impact depends on distance, the number of turbines, 

turbine height, and the design of the wind farm. They found that wind turbines located at a 

distance of 2,500 meters cause about half the impact of turbines located in a 500 meters range. 

Regarding the coefficients used in Table 3 to determine criterion d, the decreasing impact in 

distance coincides with the findings of de Vries et al. (2012) and is consistent with the 

probabilities of visual impact shown by Bishop (2002) and Sullivan et al. (2012), respecitely. 

Furthermore, Torres-Sibille et al. (2009) emphasize the importance of the number of turbines 

visible in relation to the degree of visibility, which in our case is represented by criteria a and 

c. 

[4] 
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FIGURE 1: Digital Surface Model and Triangulated Irregular Network 

The required data for applying the visual impact assessment to our case study is derived by 

applying various tools from the ArcGIS software.
5
 The measurements of visibility (the areas 

from where the wind turbines are visible), the distance to the nearest wind farm, and the view 

angle were estimated on the basis of a high-resolution Digital Surface Model (DSM) provided 

upon request by the geodata office of the federal state of NRW (Geobasis Datenportal 

NRW)
6
. With an accuracy of one meter (more than 250 million data points), the DSM 

included information about the height level of the terrain, vegetation characteristics, and 

building, and enabled a precise identification of all areas from where the wind farm is visible. 

The DSM and an excerpt from the Triangulated Irregular Network (TIN), which create the 

basis for determining the VIL for each property, are illustrated in Figure 1. 

In a last step, based on the visual impact assessment for each property, we assigned each 

property to one of the six VILs provided in Table 4. As visual impact can only be measured 

after the wind farms are built, the number of relevant observations reduces to 905 out of a 

total of 2,141 transactions in the dataset. Overall, a substantial visual impact (VIL6 and VIL5) 

could be detected for about 26% of the properties considered (239). Properties both in the 

VIL6 and VIL5 have on average a view on ten turbines, whereas the average distance is 1,190 

meters for VIL6 and 2,297 meters for VIL5. In the medium level (VIL4), the property’s view is 

                                                 
5
 We use version 10.2 of ESRI’s ArcGIS Spatial Analyst, Spatial Statistics, and 3D Analyst tool. 

6
 Further information on the data offered by the Geobasis Datenportal NRW are available online at 

https://www.geodatenzentrum.nrw.de/ASWeb34_GBDP/ASC_Frame/portal.jsp, last accessed  June 24, 2014. 



10 

 

on average affected by 7 turbines from a distance of 3,087 meters. Minor (VIL3) and marginal 

(VIL2) levels are, on average, characterized by a view on 3 turbines from 3,509 meters 

distance and 2 turbines from 4,424 meters distance, respectively. The developed VILs 

represent the ‘wind farm treatment’ that is estimated by means of the spatial DID model, as 

described in section III. 

TABLE 4: ‘Visual Impact Levels’ and the distribution of observations 

VIL Visibility 
Coefficient range 

(a×b×c×d) 
No. of observations 

(total 905) 
Average number 

of turbines visible 

Average distance to 

nearest turbine (m) 

6 Extreme 1 – 0.8 65 (7.2%) 10 1,190 

5 Dominant 0.8 – 0.6 174 (19.2%) 10 2,297 

4 Medium 0.6 – 0.4 141 (15.6%) 7 3,087 

3 Minor 0.4 – 0.2 168 (18.6%) 3 3,509 

2 Marginal 0.2 – > 0 60 (6.6%) 2 4,424 

1 No view 0 297 (32.8%) - - 

 

Data description 

The study area chosen for our analysis has an extent of about 285 km² and is located in the 

northern part of the federal state of NRW, Germany. This area can be characterized as a 

relatively flat semi-urban region. In order to investigate potential adverse visual impacts 

caused by the constructed wind farms in this location, we obtained arm’s length transaction 

price data for residential land for the three medium-sized cities of Steinfurt, Neuenkirchen, 

and Rheine. Each of the three cities comprises two city districts: Steinfurt is comprised of 

Borghorst and Burgsteinfurt, Neuenkirchen consists of Neuenkirchen (city) and St. Arnold, 

and Rheine’s city districts considered are Mesum and Hauenhorst.
7
 The property sales data, 

which is not publicly available, was provided upon request from the regional Expert Advisory 

Boards (Gutachterausschüsse) on behalf of the regional administrations. The dataset contained 

2,141 registered sales for the time period between 1992 and 2010. Besides the selling price 

and selling date for each property, the data also contained the size of the parcels, the address-

based location as well as the type and development status of the properties. In order to 

account for the inflation effect, all sales in the dataset were adjusted according to the NRW 

Construction Price Index with 2005 as its base year.
8
 

Due to a relatively strict data privacy regulation for address-based property price data in 

Germany, the regional Expert Advisory Boards granted us access to property prices only in 

terms of prices for parcels of land. The actual house prices could not be disclosed. Even 

though, according to the German building law, all property sales (parcels plus homes) have to 

be reported to the respective regional Expert Advisory Board, the dataset only consists of 

residential land parcel sales, separated from the price of the home itself, due to the prevailing 

privacy restrictions. In Germany, even though a buyer of a given land plot also buys the 

                                                 
7
 In the following, we always refer to the city districts. 

8
 The NRW Construction Price Index (Baupreisindex) is published by the NRW Federal Statistical Office and 

made available online at https://www.destatis.de/DE/PresseService/Presse/Pressemitteilungen/2013/04/PD13_ 

132_61261.html, accessed April 2, 2014. 
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associated existing structure on it, if any, the transaction prices for the land and the home can 

be designated separately.
9
    

The data used only considers properties (i.e. parcels of land) that are assigned for 

residential utilization according to the regional development plan of the regional 

administration. We are aware of the problem that wind farms are usually located on land with 

lower values and that, in this case, using land prices for this type of analysis can lead to biased 

estimates. This might likely be the case if, for instance, agricultural land prices are 

considered, as wind farms in Germany are almost entirely sited on agricultural parcels of land. 

However, in Germany a land parcel for residential utilization can, by law, not be utilized for 

wind farm development. In the light of the aforesaid, no restraints should be given in order to 

identify the pure effect of wind farms on property values using residential land price data.
10

 

Table 5 provides an overview of the distribution of property sales according to the different 

city districts.
11

 

TABLE 5: Distribution of property sales in the study area between 1992 and 2010 

    N 

Total number of property sales 2,141 

   Before treatment (TB) 1,236 

   Post treatment (TP) 905 

  

Steinfurt 939 

District Borghorst 561 

District Burgsteinfurt 378 

  

Rheine 603 

District Mesum 406 

District Hauenhorst 197 

  

Neuenkirchen 599 

District Neuenkirchen (city) 466 

District St. Arnold 133 

 

Four wind farms of different sizes and configurations are located in the study area. Table 6 

provides an overview of the wind farm characteristics, and Figure 2 illustrates the location of 

the wind farm sites as well as the property sales (and their respective VILs) in the study area. 

 

 

 

 

 

 

 

 

                                                 
9
 Note that even though the price of residential land might not be the most ideal dependent variable, it is the very 

best alternative, given the relatively strict data privacy regulation for address-based property price data in 

Germany. Nevertheless, as the obtained property sales data encompass arm’s length transactions of parcels for 

residential utilization only, we believe that it is unconditionally suitable for the study’s purpose. 
10

 As we only consider parcels for residential utilization, the parcels are mostly square-shaped, given that homes 

have to be built on these parcels. Therefore, differences in prices that may arise from the difference in the shape 

of the parcels, such as wide or narrow frontage parcels, can be safely neglected. 
11

 Repeat sales were deleted from the dataset, as their low number did not provide a sufficient basis for 

conducting a repeat sales analysis.  
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TABLE 6: Wind farm characteristics 

Wind farm 
Number of 

turbines 

Hub heights 

[m] 

Rotor 

diameters [m] 

Installed capacity 

[MW] 
Announcement Construction 

1 9 100 77 13.5 Jun. 2000 Jul. 2002 

2 19 100 77-92 28.5 Oct. 2000 Dec. 2001 

3 5 85 77 7.5 Oct. 2000 Apr. 2001 

4 26 100 77-92 27.8 Mar. 2000 Sept. 2001 

 

In the dataset, there are considerable differences with respect to visibility and distance 

from the properties considered. The number of turbines visible to a single property may range 

from 0 to 30, while the distance to the nearest wind turbine may vary from a minimum of 726 

meters to a maximum of almost 6,000 meters.
12

 Thus, the spatial distribution of the 

properties’ VILs also varies substantially across the area under study (see Figure 2). Extreme 

and dominant impact levels are mainly limited to the areas with an unobstructed view in the 

immediate proximity of wind turbines (e.g. southern Borghorst, northern Burgsteinfrut, and 

St. Arnold) and at the city limits, where the view is also likely unobstructed (south-western 

Borghorst). Areas further away from the wind farm, but within the city limits, such as the 

south-eastern part of Neuenkirchen, still show medium VILs. The visual impact mostly 

appears to fade towards the city centers, as higher building-density increasingly tends to 

obstruct the view from a given property anyway. In Hauenhorst and Mesum, mainly due to 

the long distance and the diagonal angle towards the turbines, the visual impact is mostly 

minor or even marginal. 

Besides the wind farm-related variables of interest, we also included various structural and 

neighborhood variables that need to be controlled for in hedonic pricing studies in order to 

capture the key determinants of residential land value. Those variables essentially should 

indicate the structural character and the level of accessibility to economic activities as well as 

(dis)amenities (Brigham, 1965; Cheshire and Sheppard, 1995). Table 7 provides an overview 

of descriptive statistics for the included variables. 

                                                 
12

 Note that, by law, in Germany a minimum distance of 650 meters to residential land has to be kept. 
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FIGURE 2: Wind farm visibility 
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TABLE 7: Descriptive statistics for the dependent and explanatory variables 
     

Variable Mean Std. dev. Min Max 

ln (p)    10.58 0.70 4.34 12.74 

VIL6 0.68 0.25 0 1 

VIL5 0.18 0.38 0 1 

VIL4 0.16 0.37 0 1 

VIL3 0.21 0.41 0 1 

VIL2 0.10 0.30 0 1 

TP 0.42 0.49 0 1 

ln (Parcel size) 6.24 0.58 1.10  9.83 

Type single-family house 0.62 0.48 0 1 

Type duplex house 0.18 0.38 0 1 

Type row house 0.02 0.15 0 1 

Type multi-family house 0.03 0.17 0 1 

ln (Dist. to CBD)    -6.82 0.95 -8.28 2.30 

ln (Dist. to supermarket)    -6.24 0.58 -7.45   -3.52 

ln (Dist. to school)    -6.33 0.82 -8.01   -4.25 

ln (Dist. to forestland)    -5.41 0.87 -6.65 2.30 

ln (Dist. to major road)    -5.23 0.89 -6.90   -1.97 

ln (Dist. to transmission line)    -6.73 0.84 -7.72   -2.90 
     

 

The set of structural variables essentially includes the parcel size and the development 

status of the property. The development status is included in order to control for variations in 

land values if those are developed or undeveloped, i.e. if it is still an untilled parcel or if a 

specific house type has been already built on the parcel. The different development statuses 

encompass a differentiation between undeveloped/untilled parcels and developed parcels, 

where the developed ones are again subdivided according to the type of residential building 

(i.e. single-family house, duplex house, row house, and multi-family house). We estimate the 

impact of those development statuses relative to the case of an undeveloped parcel. 

The neighborhood variables mainly comprise distance measures that represent the location 

of each property.
13

 The variables indicating accessibility and distances to (dis)amenities are 

Euclidean (inverse) distance measures. Using an inverse measure of distance, the measured 

values increase with decreasing distance. This allows for a direct interpretation of coefficient 

estimates regarding their signs and magnitude. Data on the location was obtained from 

different sources.
14

 Based on these, we were able to calculate the Euclidean (inverse) 

distances by means of tools provided in the ArcGIS toolbox. 

 

III. SPATIAL DIFFERENCE-IN-DIFFERENCES FRAMEWORK 

To examine the potential devaluation of properties that have obtained a change in vista in 

consequence of the construction of a wind farm, we use a quasi-experimental technique and 

apply a spatial DID approach. The latter allows for a comparison of the observed changes in 

the values of the treated properties against the values of a control group (Greenstone and 

                                                 
13

 We are aware of correlation problems that may occur using too many distance variables. Therefore, we tested 

for autocorrelation, multicollinearity, and heteroskedasticity by applying the Durbin-Watson test, variance 

inflation factor (VIF), and the White test, respectively, and selected according to that the variables entering the 

model.  
14

 The location of the amenities and disamenities are, on the one hand, derived from the geodata obtained from 

the Geobasis Datenportal NRW, and, on the other hand, provided upon request from the different statistical 

offices on the state level (federal statistical office of NRW) and regional level (regional/city administrations), 

respectively.  
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Gayer, 2009; Heckert and Mennis, 2012; Parmeter and Pope, 2013). The DID approach offers 

a straightforward way to estimate causal relationships and often ensure better estimates 

compared to the ones obtained via standard hedonic pricing approaches (Bertrand et al., 2004; 

Kuminoff et al., 2010). The advantages of applying a quasi-experiment within the framework 

of the hedonic pricing theory is most evident in relation to empirical deficiencies in traditional 

hedonic applications, such as the inability to control for endogenous influences and omitted 

variable bias (Parmeter and Pope, 2013). The DID framework is particularly well suited for 

the application to our study case, as it enables us to control for interferences that either exist 

in the given region prior to the siting of the wind farm, or that affect all properties irrespective 

of the wind farm construction (Lang et al., 2014). 

First, it is necessary to identify the exogenous change (i.e. treatment, e.g. through the 

introduction of a policy) in one environmental attribute, which is ultimately expected to have 

an impact on property prices. Importantly, the quasi-experimental approach requires that such 

exogenous change happens at an unexpected point in time from the viewpoint of the property 

owner (Parmeter and Pope, 2013). In addition, the development of a quasi-experimental 

analysis framework requires an understanding of how spatial influences and the timing of the 

exogenous change are related to the property market (Parmeter and Pope, 2013). Second, in 

order to investigate this exogenous change when applying a DID framework, data is needed 

that contain property sales for the areas that are affected by the introduction of the policy (i.e. 

the exogenous change) as well as data for an unaffected control group. Most importantly, 

besides the impact of the exogenous change that only occurs in some areas, the properties in 

the different areas have to be similar, if not identical, regarding their characteristics.  

In our model, the treated properties (treatment group) are defined as those with a direct 

view on the wind farm, while the properties which experienced no treatment (control group) 

are those without a view on the constructed wind farm. The treatment and control groups are 

determined by an interaction term that indicates the visual impact and the time of construction 

of the wind farm. Thus, in the period between 1992 and 2001 (pre-construction phase) all 

properties can be considered as part of the control group, while after 2001 (post-construction 

phase) only the group with a direct view on the wind farm is considered to belong to the 

treatment group.
15

 Figure 3 provides an overview of the quasi-experimental approach and the 

creation of the treatment and control group. 

                                                 
15

 In the literature the possible effects of the announcement of a wind farm project are often also investigated. In 

our case, there are two reasons not to include the effect of announcement as a treatment. Firstly, as we consider 

visual impact levels, those are directly related to the physical construction of the wind farm. Therefore, the visual 

impact cannot be sufficiently predicted before the wind turbines are actually built, even if the wind farm is 

announced with project plans that indicate the location, size, and shape of the future wind farm. Secondly, only 

very few transactions occurred in the relatively short period between announcement and construction of the wind 

farms, which in the end do not provide a reliable basis for including the announcement as a treatment as well.   
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FIGURE 3: Treatment and control group 

In order to investigate the impact of different VILs on property values in the DID 

framework proposed, we apply three spatial estimation techniques that differently account for 

spatial dependence and spatially clustered unobserved influences: (1) a spatial fixed effects 

model, (2) a SAC/SARAR, and (3) a Spatial Durbin Error Model. In all three models, the 

coefficients obtained for the interaction between the VIL variables and the variable indicating 

if the transaction occurred post construction are of particular interest (DID estimator: 

VIL×T
P
).  

The first most commonly used standard estimation approach in hedonic pricing studies is 

the spatial fixed effects model specification. By incorporating dummy variables that indicate, 

for instance, the city district where the property is located, those spatial fixed effects 

implicitly pick up any spatially clustered unobserved influences in a given district. The 

advantage of this specification is its prevention of a misspecification bias due to omitted 

variables, which explains why this straightforward technique is often applied in hedonic 

pricing frameworks (see Table 1). A more formal representation of this estimation technique, 

as applied in our model framework, is the following: 

   1 , 2 3 , 4

5 5 5

ln
VIL VIL VIL

P P

i i i k i i k i i i i

k k k

p VIL T VIL T X      
  

          , 

where ln(pi) is the sales price of property i, αi represents the spatial fixed effects for property i 

(i.e. the city district), δi expresses the temporal fixed effects indicating the time when property 

i was sold (controlling for annual and monthly variations), VILk,i indicates the k
th

 level of 

[5] 
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visual impact for property i, T
P

i is a dummy variable equal to unity if property i was sold post 

wind farm construction
16

, VILk,i×T
P

i is the DID estimator that measures the impact of the 

VILk,i in the treatment group (properties that were sold in period T
P
), Xi a vector containing the 

set of other structural and neighborhood variables, and εi is the error term. The estimates for 

β1 can be interpreted as a measure for ex-ante treatment differences in property prices for the 

k
th

 VIL relative to VIL1, β2 is the coefficient indicating differences in the control group in the 

treatment period, β3 is the coefficient of interest that measures the difference in property 

prices development for the k
th

 VIL relative to VIL1 as result of the wind farm construction, and 

β4 is the coefficient measuring the influence of structural and neighborhood variables on the 

property price variation. 

Although the incorporation of spatial fixed effects mitigates the bias caused by spatially 

clustered unobserved variables, its ability to sufficiently account for spatial dependence 

remains empirically spurious (Anselin and Arribas-Bel, 2013). Spatial dependence, not 

sufficiently controlled for, might lead to biased and/or inefficient estimates (Anselin, 1988; 

Anselin and Getis, 2010). In order to incorporate spatial dependence, the literature suggests 

different models that allow for capturing unobserved spatial characteristics by means of the 

inclusion of spatial lags in the dependent variable, the explanatory variables, and the error 

term (LeSage and Pace, 2009). From an empirical perspective, strong motivation to apply 

spatial econometric techniques is provided given the potentially simultaneous presence of 

spatial dependence and spatially clustered omitted variables (Lerbs and Oberst, 2014). Given 

the strength of spatial dependence in the dependent variable, the explanatory variables and the 

error term, the omitted variable bias can be intensified if the included explanatory variables 

and any omitted spatial effects exhibit a non-zero correlation (Pace and LeSage, 2010). In this 

context, we estimate the following model specifications that explicitly account for spatial 

dependence in the dependent variable (ln(pi)), the explanatory variables (VILk,i, T
P

i, Xi), and 

the error term (εi).  

Firstly, in order to account for potential spatial dependence in the dependent variable 

versus the error term, we estimate a spatial auto-regressive lag model with an auto-regressive 

error term model (SAC/SARAR), which takes the form   

     1 , 2 3 , 4

5 5 5

ln ln
VIL VIL VIL

P P

i i i k i i k i i i i

k k k

p W p VIL T VIL T X      
  

          , 

where i i iW      and all variables and coefficients are equal to those introduced in eq. 

[5]. The difference compared to eq. [5] lies in the underlying spatial process given by W, 

which represents an N×N row-stochastic spatial weight matrix indicating the spatial 

relationship between the observations, i.e. specifying ‘neighborhood sets’ for each 

observation (Anselin, 2002). The estimation W is based on the spatial proximity among the 

properties. Following Tobler’s First Law of Geography (Tobler, 1970), we use a spatial 

weight matrix (W) based on a k-nearest neighbor inverse distance. The latter assumes a 

decreasing spatial influence as the distance between two properties increases. In the case 
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 T
P

i indicates ‘post treatment’, T
B

i denotes the ‘before treatment’ phase. 

[6] 
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study applied here, W is calculated for the first five nearest neighbors of each observation.
17

 

Furthermore, ρ and λ are the scalar parameters denoting the spatial dependence in the 

dependent variable and the error term, respectively. As the SAC/SARAR simultaneously 

combines both a Spatial Lag and Spatial Error model, it reduces to a Spatial Error model if 

ρ=0, and to a Spatial Lag model if λ=0. 

Secondly, in the presence of unobserved, spatially dependent local characteristics, the 

inclusion of spatial lags in the explanatory variables should also be considered (Lerbs and 

Oberst, 2014). Since the SAC/SARAR does not allow for the inclusion of this type of spatial 

dependence, the literature suggests the application of a Spatial Durbin Model (SDM) (Elhorst, 

2010; Pace and LeSage, 2010). The SDM combines the incorporation of spatial dependence in 

the explanatory variables, with either a spatial lag in the dependent variable or in the error 

term. In our case, the SDM is combined with a spatially auto-regressive error term and 

becomes, therefore, a Spatial Durbin Error Model (SDEM). The SDEM is given by     

     1 , 2 3 , 4 ,

5 5 5

ln
VIL VIL VIL

P P P

i i k i i k i i i k i i i i

k k k

p VIL T VIL T X W VIL T X      
  

            , 

where, again, all variables and coefficients as well as W and μi ( i i iW     ) are the same 

as the ones defined in eqs. [5] and [6]. The spatial dependence in the explanatory variables 

(VILk,i, T
P

i, and Xi) is denoted by . 

 

IV. RESULTS 

DID estimations 

Table 8 presents the results obtained from the three models. The values of the adjusted R
2
 

and the Akaike Information Criterion (AIC) are provided at the bottom of the table. The log-

likelihood and likelihood ratio are documented for the SAC/SARAR and SDEM in order to 

indicate the model fit and the significance of the spatial parameters included. Furthermore, the 

spatial autocorrelation is indicated by Moran’s I of the estimated residuals and by the 

Lagrange Multiplier error test for spatial error dependence. 

Overall, all three models perform well according to the values obtained for the adjusted R
2
 

and the AIC. Both indicators report the SDEM to have the highest explanatory power, while 

the spatial fixed effects model has the lowest. Given the two indicators for the presence of 

spatial autocorrelation (Moran’s I and the LM error test), the spatial fixed effects model still 

suffers from spatial dependence despite the incorporation of city district effects. Both 

indicators obtain significant values at the 1% level, revealing strong spatial dependence in the 

error term and the residuals and, therefore, the inability of the spatial fixed effects model to 

                                                 
17

 Among the various possibilities to specify W, e.g. based on contiguity, fixed or inverse distances, nearest 

neighbors, or spatial interaction, we believe that a combination of distance and nearest neighbors is the most 

appropriate alternative for addressing spatial spillovers in a property market. In this way, we can account for 

varying spatial densities of neighbors in different locations. After testing various alternative k’s to determine the 

most efficient set of influential neighbors for each observation, we assume that the five nearest neighbors capture 

potential locational spillover effects most sufficiently. Overall, the results turned out to be relatively insensitive 

to different weight matrices. Nonetheless, the underlying structure of W remains the strongest assumption in 

spatial models, where the appropriateness in a given situation is an empirical matter (Anselin, 2002).     

[7] 
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control for spatial dependence. Furthermore, the SAC/SARAR and the SDEM substantially 

reduce and capture spatial dependence. In addition, the SDEM outperforms the SAC/SARAR 

in both the log-likelihood and the likelihood ratio test. 

 

TABLE 8: DID estimates for the three model specifications 

    

 
Spatial Fixed 

Effects Model 

SAC/SARAR /  

SE Model 
SDEM† 

Variable‡ Coeff. (SE) Coeff. (SE) Coeff. (SE) 

 

Pre-differences in VILs relative to VIL1(β1) 
     

VIL6    .016 (.039) .028 (.042) .054 (.046) 

VIL5    .053* (.028) .144*** (.031) .125*** (.034) 

VIL4   -.009 (.026) .063** (.028) .065** (.029) 

VIL3   -.011 (.023)  .016 (.024)    .013 (.024) 

VIL2   -.000 (.027) -.067** (.030) -.060** (.030) 
 

Time differences relative to TB (β2) 
     

TP   -.045 (.048)  .047 (.048)    .047 (.047) 
 

DID estimates (β3) 
     

VIL6 × TP -.063 (.050) -.104* (.054) -.098* (.054) 

VIL5 × TP -.128*** (.037) -.157*** (.040) -.155*** (.040) 

VIL4 × TP -.059 (.037) -.089** (.039) -.091** (.038) 

VIL3 × TP -.011 (.034) -.049 (.033) -.045 (.033) 

VIL2 × TP    .107** (.045) .073 (.047)    .071 (.047) 
 

Other explanatory variables (β4) 
     

ln (Parcel size)  1.032*** (.010) 1.012*** (.010)  1.011*** (.010) 

Type single-family house    .148*** (.018) .153*** (.018) .160*** (.018) 

Type duplex house    .207*** (.022) .186*** (.021) .188*** (.022) 

Type row house    .156*** (.042) .181*** (.044) .203*** (.044) 

Type multi-family house    .156*** (.038) .140*** (.036) .161*** (.037) 

ln (Dist. to CBD)    .069*** (.009) .056*** (.010) .052*** (.016) 

ln (Dist. to supermarket)   -.003 (.013)    .020 (.020)    .009 (.043) 

ln (Dist. to school)    .034*** (.008) .030*** (.011) .026* (.013) 

ln (Dist. to forestland)   -.014* (.008) -.038*** (.011) -.062*** (.021) 

ln (Dist. to major road)   -.020*** (.008) -.024** (.011) -.064*** (.017) 

ln (Dist. to transmission line)   -.041*** (.010) -.005 (.013) -.209*** (.068) 

(Intercept)  3.784*** (.154) 3.615*** (.296)  4.111*** (.274) 
     
ρ (dependent variable spatial lag)  .029 (.020)  

λ (spatial error)   .503*** (.025)  .501*** (.021) 
    

Adjusted R²   .866 .878 .881 

AIC 278.53 139.08 119.85 
    
Log-likelihood  -14.54 -11.07 

Likelihood ratio (LR) test  424.61*** 384.17*** 

Lagrange multiplier (LM) error test 268.32*** .088 .145 

Residuals Moran’s I 16.48*** .330 .414 
    

*, ** and *** indicate significance at the 10%, 5% and 1% levels, respectively. 
† The SDEM estimates for the spatial lags in the explanatory variables are provided in Table A1 in the Appendix. 
‡ The coefficients can be interpreted as elasticities in the case of a log-log form and as semi-elasticities in the case of a log-level form 

(Gujarati and Porter, 2009). In order to correctly interpret dummy variables in semilogarithmic models, the coefficients have to be 

transformed according to Halvorsen and Palmquist (1980). In the table above we report the estimated coefficients, the transformed, relative 

effects are indicated in the discussion of the results. 

In the SAC/SARAR, the parameter for spatial dependence in the dependent variables ρ is 

found to be statistically insignificant, while the parameter for spatial dependence in the error 
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term λ is significant. Thus, the SAC/SARAR can be reduced to a Spatial Error model. In our 

case, this implies that spatial dependence is not present in the form of spatially clustered 

spillover effects across neighboring properties, but rather in the form of spatial 

interdependencies among unobserved or poorly observed attributes. Hence, the applied 

SDEM is based on the spatial dependence-robust Spatial Error model and is further expanded 

by spatial lags in the explanatory variables (SDM). This outcome can be explained by the 

characteristics of SDMs in the presence of spatially dependent omitted local effects (Lerbs 

and Oberst, 2014). The estimated spatial lags for the various explanatory variables of the 

SDEM are provided in a separate Table A1 in the Appendix. 

Across all models, the coefficient estimates can be directly interpreted as the impacts on 

property prices due to variations in the given attributes. Also in the case of the SDEM, the β 

coefficients obtained represent direct effects, whereas the coefficients for the spatially lagged 

explanatory variables correspond to cumulative indirect effects (LeSage and Pace, 2009).
18

 

Given the comparison of the three models in terms of performance as well as 

shortcomings, the estimates obtained from the SDEM can be considered to be the most 

efficient ones. Therefore, the following discussion focuses on the SDEM estimates. 

The first set of estimates in Table 8 presents the differences in property values across the 

various VILs relative to VIL1. Without considering the construction dates of the wind farms, 

the estimates indicate if there are any pre-existing differences among the VIL groups. VIL5 and 

VIL4 obtain significant coefficients (.125 (relative effect .133) and .065 (relative effect .067), 

respectively), thus indicating a positive premium for these locations (ex-ante the ‘wind farm 

treatment’). These locations were partly close to, and/or with an unobstructed view on, the 

eventual site of the wind turbines. As we only consider residential land within or near urban 

areas, the common assumption that wind farms are necessarily located near land plots of 

lower values does not hold for our study area in Germany. Properties in the group VIL2 had 

lower values prior to the treatment.  

The estimates for β2 denote the differences in property values of time period T
P
 (post-

treatment) relative to the period T
B
 (before treatment). According to the estimates obtained, no 

statistical evidence for a significant effect could be found, to some extent also due to the 

application of temporal fixed effects that enable controlling for annual and monthly 

variations. 

The next set of coefficients, the DID estimates corresponding to β3, are the key estimates 

of this analysis, as they measure the impact of the different VILs after the wind farms were 

constructed (T
P
) relative to the control group (properties without view on the constructed 

wind turbines). Most importantly, negatively significant impacts are found for properties that 

were rated having an extreme (VIL6), dominant (VIL5), and medium (VIL4) view of the wind 

farm ex-post construction. Properties with an extreme view on a wind farm site show a 

decrease in value of 10.3% (at the 10% significance level). Properties that obtained a 

dominant view dropped in value by about 16.8% (at the 1% significance level). Also 

properties with a medium impact level (VIL4) decreased in price by about 9.5% (at the 5% 

                                                 
18

 For instance, the inclusion of a spatial lag in the dependent variables would have been more complicated 

regarding the direct comparison of the coefficients estimated, as in this case the dependent variable are not only 

directly affected by the locations’ own characteristics, but also indirectly by neighboring locations (Lerbs and 

Oberst, 2014). For further information on parameter interpretation in spatial models, see LeSage and Pace 

(2009). 
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significance level) in consequence of the wind farm construction.
19

 Overall, about 42% of the 

properties that were affected by the construction of the wind farm experienced property 

devaluation. According to Table 4, these are located, on average, within the first three 

kilometers to the nearest turbine and have an average unobstructed view on seven to ten 

turbines. However, the small number of transactions (65) that occurred in the VIL6 group ex-

post the turbines’ construction limits the confidence that can be ascribed to the estimates 

obtained for this group, whereas it must be assumed that the negative effects of this VIL might 

be underestimated. Nevertheless, negative impacts on property values for those properties 

with dominant views are consistent across all three estimated models. The negative impacts 

on properties with a medium view on the wind farm are significant at the 5% level in the 

SARAR and SDEM.  In contrast, minor (VIL3) and marginal (VIL2) visual impacts are not 

found to have any significant impact on property prices. Thus, a view that is on average 

affected by three turbines (or less) visible from a distance of 3.5 kilometers (or more) does not 

diminish property values. In general, according to the coefficients estimated for the different 

VILs, the magnitude of the negative estimates tends to drop as the visual impact decreases. 

The set of the remaining explanatory variables shows consistent estimates with respect to 

their corresponding coefficient signs and significance levels. Most prominently, as expected, 

the parcel size and the development status affect property values positively. Furthermore, 

short distances to the central business district (CBD) and schools also have a positive 

influence on property values. Those distance measures can basically be interpreted as 

indicators for accessibility and centrality. Vice versa, the negative estimate for distance to the 

next forestland can be interpreted as an indicator for less centrality and remoteness, which is 

possibly viewed negatively and, ultimately, overcast potential amenity effects due to the 

proximity to natural reserve area. The proximity to major roads (e.g. freeway or highway) has 

a negative impact on property prices, likely due to a higher noise level in their surroundings.      

 One further interesting finding refers to the significantly negative impact of the proximity 

to electricity transmission lines. A decrease in the distance to the power lines by 1% results in 

a decrease in property value by .209%. The power lines are ramified within the study area and 

connect the different wind farms with the urban areas, implying a close proximity to the 

properties in most parts of the area. Due to the widespread, and in rural and semi-urban areas 

even extensive, siting of energy infrastructure, it might be conceivable that transmission lines 

affect property values even more than wind farms. Because of their locational coherence, a 

joint assessment of the (visual) impacts of energy infrastructure (such as wind farms plus 

associated electricity grid) could be of interest for future research.  

 

Placebo model 

In order to test the robustness of the DID framework and the estimates obtained, we 

performed a series of placebo models on subsets of the dataset. A placebo model basically 

introduces a placebo treatment that does not exactly correspond to the actual treatment used in 

the original model, thus performing a procedure that is similar to a sensitivity analysis, which 

investigates a model’s reliability through the variation of some of its key parameters. 
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 The relative effect of -10.3% corresponds to a coefficient of -.098 (VIL6), an effect of -16.8% to a coefficient 

of -.155 (VIL5), and the effect of -9.5% to an estimated coefficient of -.091 (VIL4) (see Table 8).  
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 Applied to our study case, we included in the placebo group only those properties that 

were sold before the wind farm construction. In turn, the data used in the placebo setting is 

reduced to 1,131 property sales taking place in the period between 1992 and 2001. During this 

time frame no wind farms were constructed in the study area. Apart from that, the treatment 

group and the control group are based on the same criteria presented. As there were no wind 

farms constructed in this period of time, the timing of the introduction of the treatment is 

chosen randomly. We perform different model settings, each assuming a hypothetical 

introduction of the treatment (wind farm construction) in the years between 1994 and 1999. 

To verify the robustness of the proposed initial framework, no significant wind farm impact 

should be measured, as the introduced placebo treatments are chosen arbitrarily. 

 A representative overview of the placebo estimates for the treatment year 1995 is provided 

in Table A2 in the Appendix. As the SDEM model yields the most reliable estimates in the 

DID setting described above, we conducted our analysis in the placebo settings only with the 

SDEM. Overall, the tested model settings consistently do not find any significant property 

value changes due to the placebo treatment. Therefore, arbitrarily chosen wind farm 

construction dates do not have any explanatory power on the variation of the property values. 

The remaining explanatory variables produced similar results to the ones obtained with the 

initial DID setting, where the set of structural variables (parcel size and development status) 

were found to explain most of the variation in property prices. The various distance measures 

(distance to CBD, major road, and schools) also had a similar influence on properties in the 

subset regarding their coefficient signs and significance values.  

In summary, the series of placebo model settings underline the reliability and statistical 

evidence of the results obtained. In turn, this supports the application of the suggested DID 

framework as well as the proxies used for visual wind farm effects.  

 

V. CONCLUSIONS 

In this paper we applied a spatial DID approach to investigate the local impacts of wind 

farms on the development of property prices in the surroundings of a semi-urban region in 

Germany. In the proposed DID framework, we compared price changes in a treatment group 

that included properties whose view was affected by the construction of a wind farm, with 

changes in a control group that consists of properties whose view remained unaltered. The 

level of the visual impact was assessed by means of a quantitative criteria-based approach that 

incorporated the magnitude of visibility changes for each single property (in terms of the 

number of visible turbines), its distance to the nearest turbine, the view angle from the given 

property, as well as an overall visibility effect for the different city districts where each 

property is located. In addition, three alternative spatial models with different underlying 

spatial processes were estimated.  

Our results indicate that the properties that obtained an extreme to medium view due to the 

wind farm construction showed a decrease in price by about 10-17%. In contrast, minor and 

marginal changes in the property’s views do not cause any statistically measurable adverse 

effect on its value. In this context, the relationship between the number of visible turbines and 

the distance from where those are visible plays a key role regarding the local impact of wind 

farms on their surroundings. 
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In order to sufficiently capture visual effects caused by wind farms, the definition of valid 

and reliable proxies is one of the main challenges for this kind of hedonic pricing 

applications. Applying simple distance variables as proxies for local wind farm impacts can 

only provide a crude measure and should only be used as a first approximation. The same 

applies to binary visibility variables that only indicate if the wind farm site is visible or not. 

Furthermore, due to the subjective and somehow arbitrary nature of qualitative visual impact 

rankings, the incorporation of quantitative assessments is the preferable strategy. To date, 

literature that provides quantitative visual impact assessments is still sparse. In addition, most 

of the proposed methodologies are hard (or even not possible) to implement in hedonic 

pricing contexts. The approach suggested, and the incorporation of the visual impact 

assessment definitely obtains potential for improvement and extension.  

 Regarding the estimated models, we find evidence for the application of spatial 

econometric methodologies that specifically address the problem of spatial dependence in 

property market data. In our case, the most commonly applied spatial fixed effects 

specification appears to be less suited due to its inability to capture spatial autocorrelation. 

Therefore, the application of spatial econometric models, such as the SDEM, is vital for 

preventing biases caused by the presence of spatial dependence and unobserved spatially 

clustered effects.    

Finally, a further interesting and not yet fully explored potential application for this kind of 

analyses is the investigation of joint impacts of energy generation facilities and the associated 

energy infrastructure. In particular, transmission lines (i.e. overhead power cables) are widely 

spread across entire regions and involve a certain visual impact on the surrounding area. But, 

in contrast to wind farms which constitute a large-scale element in the landscape that is 

limited to a specific location, transmission lines are continuous elements traversing entire 

landscapes. The investigation of those potentially joint, but yet characteristically different, 

impacts might yield valuable new insights and thus seems to be another fruitful avenue for 

future research. 
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APPENDIX 

 

TABLE A1: SDEM estimates for the spatial lag of the explanatory variables 

Spatially lagged explanatory variables () Coeff. (SE) 

Spatial lag VIL6 -.068 (.057) 

Spatial lag VIL5  .027 (.040) 

Spatial lag VIL4 -.049 (.038) 

Spatial lag VIL3 .000 (.034) 

Spatial lag VIL2   -.041 (.045) 

Spatial lag T
P
 .066*** (.025) 

Spatial lag ln (Parcel size) .016 (.023) 

Spatial lag Type single-family house .098*** (.037) 

Spatial lag Type duplex house .174*** (.044) 

Spatial lag Type row house  .032 (.087) 

Spatial lag Type multi-family house .137 (.087) 

Spatial lag ln (Dist. to CBD) .013 (.022) 

Spatial lag ln (Dist. to supermarket)    .006 (.049) 

Spatial lag ln (Dist. to school) .020 (.018) 

Spatial lag ln (Dist. to forestland)  .047* (.024) 

Spatial lag ln (Dist. to major road)  .052** (.023) 

Spatial lag ln (Dist. to transmission line) .215*** (.070) 

*, ** and *** indicate significance at the 10%, 5% and 1% levels, respectively. 
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TABLE A2: SDEM results for the placebo model setting with the introduction of the treatment in 1995 

  

 SDEM† 

Variable Coeff. (SE) 

 

Pre-differences in VILs relative to VIL1 (β1) 

 

VIL6 -.023 (.079) 

VIL5 .052 (.055) 

VIL4 -.004 (.047) 

VIL3 -.052 (.040) 

VIL2 -.027 (.048) 

 

Time differences relative to TB (β2) 

 

TP (1995 – 2001) .588*** (.050) 

 

DID estimates (β3) 

 

VIL6 × TP -.046 (.078) 

VIL5 × TP -.054 (.054) 

VIL4 × TP -.018 (.054) 

VIL3 × TP .058 (.048) 

VIL2 × TP -.052 (.056) 

 

Other explanatory variables (β4) 

 

ln (Parcel size) 1.027*** (.013) 

Type single-family house .266*** (.027) 

Type duplex house .311*** (.031) 

Type row house .305*** (.050) 

Type multi-family house .268*** (.047) 

ln (Dist. to CBD) .077*** (.020) 

ln (Dist. to supermarket) -.008 (.049) 

ln (Dist. to school) .026* (.016) 

ln (Dist. to forestland) -.011 (.025) 

ln (Dist. to major road) -.075*** (.020) 

ln (Dist. to transmission line) -.174** (.073) 

(Intercept) 4.136*** (.343) 

  

λ (spatial error) -.512*** (.028) 

  

Adjusted R² .908 

AIC 79.56 

  

Log-likelihood -20.22 

Likelihood ratio (LR) test 220.47*** 

Lagrange multiplier (LM) error test .047 

Residuals Moran’s I -.175 
  

*, ** and *** indicate significance at the 10%, 5% and 1% levels, respectively. 
†
 Note: The SDEM estimates for the spatial lags in the explanatory variables are not provided in this table 

 



 
 
 
 

List of FCN Working Papers 
 

2014 
 
Sunak Y., Madlener R. (2014). Local Impacts of Wind Farms on Property Values: A Spatial Difference-in-

Differences Analysis, FCN Working Paper No. 1/2014, Institute for Future Energy Consumer Needs and 
Behavior, RWTH Aachen University, February (revised October 2014). 

 
2013 
 
Grieser B., Madlener R., Sunak Y. (2013). Economics of Small Wind Power Plants in Urban Settings: An Empirical 

Investigation for Germany, FCN Working Paper No. 1/2013, Institute for Future Energy Consumer Needs 
and Behavior, RWTH Aachen University, January. 

 
Madlener R., Specht J.M. (2013). An Exploratory Economic Analysis of Underground Pumped-Storage Hydro 

Power Plants in Abandoned Coal Mines, FCN Working Paper No. 2/2013, Institute for Future Energy 
Consumer Needs and Behavior, RWTH Aachen University, February. 

 
Kroniger D., Madlener R. (2013). Hydrogen Storage for Wind Parks: A Real Options Evaluation for an Optimal 

Investment in More Flexibility, FCN Working Paper No. 3/2013, Institute for Future Energy Consumer Needs 
and Behavior, RWTH Aachen University, February. 

 
Petersen C., Madlener R. (2013). The Impact of Distributed Generation from Renewables on the Valuation and 

Marketing of Coal-Fired and IGCC Power Plants, FCN Working Paper No. 4/2013, Institute for Future Energy 
Consumer Needs and Behavior, RWTH Aachen University, February. 

 
Oberst C.A., Oelgemöller J. (2013). Economic Growth and Regional Labor Market Development in German 

Regions: Okun’s Law in a Spatial Context, FCN Working Paper No. 5/2013, Institute for Future Energy 
Consumer Needs and Behavior, RWTH Aachen University, March. 

 
Harmsen - van Hout M.J.W., Ghosh G.S., Madlener R. (2013). An Evaluation of Attribute Anchoring Bias in a 

Choice Experimental Setting. FCN Working Paper No. 6/2013, Institute for Future Energy Consumer Needs 
and Behavior, RWTH Aachen University, April. 

 
Harmsen - van Hout M.J.W., Ghosh G.S., Madlener R. (2013). The Impact of Green Framing on Consumers’ 

Valuations of Energy-Saving Measures. FCN Working Paper No. 7/2013, Institute for Future Energy 
Consumer Needs and Behavior, RWTH Aachen University, April. 

 
Rosen C., Madlener R. (2013). An Experimental Analysis of Single vs. Multiple Bids in Auctions of Divisible 

Goods, FCN Working Paper No. 8/2013, Institute for Future Energy Consumer Needs and Behavior, RWTH 
Aachen University, April (revised November 2013). 

 
Palmer J., Sorda G., Madlener R. (2013). Modeling the Diffusion of Residential Photovoltaic Systems in Italy: An 

Agent-based Simulation, FCN Working Paper No. 9/2013, Institute for Future Energy Consumer Needs and 
Behavior, RWTH Aachen University, May. 

 
Bruns S.B., Gross C. (2013). What if Energy Time Series are not Independent? Implications for Energy-GDP 

Causality Analysis, FCN Working Paper No. 10/2013, Institute for Future Energy Consumer Needs and 
Behavior, RWTH Aachen University, June. 

 
Bruns S.B., Gross C., Stern D.I. (2013). Is There Really Granger Causality Between Energy Use and Output?, 

FCN Working Paper No. 11/2013, Institute for Future Energy Consumer Needs and Behavior, RWTH 
Aachen University, August. 

 
Rohlfs W., Madlener R. (2013). Optimal Power Generation Investment: Impact of Technology Choices and 

Existing Portfolios for Deploying Low-Carbon Coal Technologies, FCN Working Paper No. 12/2013, Institute 
for Future Energy Consumer Needs and Behavior, RWTH Aachen University, August. 

 



Rohlfs W., Madlener R. (2013). Challenges in the Evaluation of Ultra-Long-Lived Projects: Risk Premia for 
Projects with Eternal Returns or Costs, FCN Working Paper No. 13/2013, Institute for Future Energy 
Consumer Needs and Behavior, RWTH Aachen University, August. 

 
Michelsen C.C., Madlener R. (2013). Switching from Fossil Fuel to Renewables in Residential Heating Systems: 

An Empirical Study of Homeowners' Decisions in Germany, FCN Working Paper No. 14/2013, Institute for 
Future Energy Consumer Needs and Behavior, RWTH Aachen University, October. 

 
Rosen C., Madlener R. (2013). The Role of Information Feedback in Local Reserve Energy Auction Markets, FCN 

Working Paper No. 15/2013, Institute for Future Energy Consumer Needs and Behavior, RWTH Aachen 
University, November. 

 
Himpler S., Madlener R. (2013). A Dynamic Model for Long-Term Price and Capacity Projections in the Nordic 

Green Certificate Market, FCN Working Paper No. 16/2013, Institute for Future Energy Consumer Needs 
and Behavior, RWTH Aachen University, November. 

 
Weibel S., Madlener R. (2013). Cost-effective Design of Ringwall Storage Hybrid Power Plants: A Real Options 

Analysis, FCN Working Paper No. 17/2013, Institute for Future Energy Consumer Needs and Behavior, 
RWTH Aachen University, December. 

 
Budny C., Madlener R., Hilgers C. (2013). Economic Feasibility of Pipeline and Underground Reservoir Storage 

Options for Power-to-Gas Load Balancing, FCN Working Paper No. 18/2013, Institute for Future Energy 
Consumer Needs and Behavior, RWTH Aachen University, December. 

 
Johann A., Madlener R. (2013). Profitability of Energy Storage for Raising Self-Consumption of Solar Power: 

Analysis of Different Household Types in Germany, FCN Working Paper No. 19/2013, Institute for Future 
Energy Consumer Needs and Behavior, RWTH Aachen University, December. 

 
Hackbarth A., Madlener R. (2013). Willingness-to-Pay for Alternative Fuel Vehicle Characteristics: A Stated 

Choice Study for Germany, FCN Working Paper No. 20/2013, Institute for Future Energy Consumer Needs 
and Behavior, RWTH Aachen University, December. 

 
Katatani T., Madlener R. (2013). Modeling Wholesale Electricity Prices: Merits of Fundamental Data and Day-

Ahead Forecasts for Intermittent Power Production, FCN Working Paper No. 21/2013, Institute for Future 
Energy Consumer Needs and Behavior, RWTH Aachen University, December. 

 
Baumgärtner M., Madlener R. (2013). Factors Influencing Energy Consumer Behavior in the Residential Sector in 

Europe: Exploiting the REMODECE Database, FCN Working Paper No. 22/2013, Institute for Future Energy 
Consumer Needs and Behavior, RWTH Aachen University, December. 

 
Charalampous G., Madlener R. (2013). Risk Management and Portfolio Optimization for Gas- and Coal-Fired 

Power Plants in Germany: A Multivariate GARCH Approach, FCN Working Paper No. 23/2013, Institute for 
Future Energy Consumer Needs and Behavior, RWTH Aachen University, December. 

 
Mallah S., Madlener R. (2013). The Causal Relationship Between Energy Consumption and Economic Growth in 

Germany: A Multivariate Analysis, FCN Working Paper No. 24/2013, Institute for Future Energy Consumer 
Needs and Behavior, RWTH Aachen University, December. 

 
2012 
 
Ghosh G., Shortle J. (2012). Managing Pollution Risk through Emissions Trading, FCN Working Paper 

No. 1/2012, Institute for Future Energy Consumer Needs and Behavior, RWTH Aachen University, January. 
 
Palzer A., Westner G., Madlener M. (2012). Evaluation of Different Hedging Strategies for Commodity Price Risks 

of Industrial Cogeneration Plants, FCN Working Paper No. 2/2012, Institute for Future Energy Consumer 
Needs and Behavior, RWTH Aachen University, March (revised March 2013). 

 
Sunak Y., Madlener R. (2012). The Impact of Wind Farms on Property Values: A Geographically Weighted 

Hedonic Pricing Model, FCN Working Paper No. 3/2012, Institute for Future Energy Consumer Needs and 
Behavior, RWTH Aachen University, May (revised March 2013). 

 
Achtnicht M., Madlener R. (2012). Factors Influencing German House Owners' Preferences on Energy Retrofits, 

FCN Working Paper No. 4/2012, Institute for Future Energy Consumer Needs and Behavior, RWTH Aachen 
University, June. 

 
Schabram J., Madlener R. (2012). The German Market Premium for Renewable Electricity: Profitability and Risk 

of Self-Marketing, FCN Working Paper No. 5/2012, Institute for Future Energy Consumer Needs and 
Behavior, RWTH Aachen University, July. 



Garbuzova M., Madlener R. (2012). Russia’s Emerging ESCO Market: Prospects and Barriers for Energy 
Efficiency Investments, FCN Working Paper No. 6/2012, Institute for Future Energy Consumer Needs and 
Behavior, RWTH Aachen University, July (revised September 2012). 

 
Rosen C., Madlener R. (2012). Auction Design for Local Reserve Energy Markets, FCN Working Paper No. 

7/2012, Institute for Future Energy Consumer Needs and Behavior, RWTH Aachen University, July (revised 
March 2013). 

 
Sorda G., Madlener R. (2012). Cost-Effectiveness of Lignocellulose Biorefineries and their Impact on the 

Deciduous Wood Markets in Germany. FCN Working Paper No. 8/2012, Institute for Future Energy 
Consumer Needs and Behavior, RWTH Aachen University, September. 

 
Madlener R., Ortlieb C. (2012). An Investigation of the Economic Viability of Wave Energy Technology: The Case 

of the Ocean Harvester, FCN Working Paper No. 9/2012, Institute for Future Energy Consumer Needs and 
Behavior, RWTH Aachen University, October. 

 
Hampe J., Madlener R. (2012). Economics of High-Temperature Nuclear Reactors for Industrial Cogeneration, 

FCN Working Paper No. 10/2012, Institute for Future Energy Consumer Needs and Behavior, RWTH 
Aachen University, October. 

 
Knaut A., Madlener R., Rosen C., Vogt C. (2012). Effects of Temperature Uncertainty on the Valuation of 

Geothermal Projects: A Real Options Approach, FCN Working Paper No. 11/2012, Institute for Future 
Energy Consumer Needs and Behavior, RWTH Aachen University, November. 

 
Hünteler J., Niebuhr C.F., Schmidt T.S., Madlener R., Hoffmann V.H. (2012). Financing Feed-in Tariffs in 

Developing Countries under a Post-Kyoto Climate Policy Regime: A Case Study of Thailand, FCN Working 
Paper No. 12/2012, Institute for Future Energy Consumer Needs and Behavior, RWTH Aachen University, 
December. 

 
Blass N., Madlener R. (2012). Structural Inefficiencies and Benchmarking of Water Supply Companies in 

Germany, FCN Working Paper No. 13/2012, Institute for Future Energy Consumer Needs and Behavior, 
RWTH Aachen University, December. 

 
Madlener R., Schabram J. (2012). Predicting Reserve Energy from New Renewables by Means of Principal 

Component Analysis and Copula Functions, FCN Working Paper No. 14/2012, Institute for Future Energy 
Consumer Needs and Behavior, RWTH Aachen University, December. 

 
Harzendorf F., Madlener R. (2012). Optimal Investment in Gas-Fired Engine-CHP Plants in Germany: A Real 

Options Approach, FCN Working Paper No. 15/2012, Institute for Future Energy Consumer Needs and 
Behavior, RWTH Aachen University, December. 

 
Schmitz M., Madlener R. (2012). Economic Feasibility of Kite-Based Wind Energy Powerships with CAES or 

Hydrogen Storage, FCN Working Paper No. 16/2012, Institute for Future Energy Consumer Needs and 
Behavior, RWTH Aachen University, December. 

 
Dergiades T., Madlener R., Christofidou G. (2012). The Nexus between Natural Gas Spot and Futures Prices at 

NYMEX: Do Weather Shocks and Non-Linear Causality in Low Frequencies Matter?, FCN Working Paper 
No. 17/2012, Institute for Future Energy Consumer Needs and Behavior, RWTH Aachen University, 
December (revised September 2013). 

 
Rohlfs W., Madlener R. (2012). Assessment of Clean-Coal Strategies: The Questionable Merits of Carbon 

Capture-Readiness, FCN Working Paper No. 18/2012, Institute for Future Energy Consumer Needs and 
Behavior, RWTH Aachen University, December. 

 
Wüstemeyer C., Bunn D., Madlener R. (2012). Bridging the Gap between Onshore and Offshore Innovations by 

the European Wind Power Supply Industry: A Survey-based Analysis, FCN Working Paper No. 19/2012, 
Institute for Future Energy Consumer Needs and Behavior, RWTH Aachen University, December. 

 
Fuhrmann J., Madlener R. (2012). Evaluation of Synergies in the Context of European Multi-Business Utilities, 

FCN Working Paper No. 20/2012, Institute for Future Energy Consumer Needs and Behavior, RWTH 
Aachen University, December. 

 
2011 
 
Sorda G., Sunak Y., Madlener R. (2011). A Spatial MAS Simulation to Evaluate the Promotion of Electricity from 

Agricultural Biogas Plants in Germany, FCN Working Paper No. 1/2011, Institute for Future Energy 
Consumer Needs and Behavior, RWTH Aachen University, January (revised October 2012). 

 



Madlener R., Hauertmann M. (2011). Rebound Effects in German Residential Heating: Do Ownership and Income 
Matter?, FCN Working Paper No. 2/2011, Institute for Future Energy Consumer Needs and Behavior, RWTH 
Aachen University, February. 

 
Garbuzova M., Madlener R. (2011). Towards an Efficient and Low-Carbon Economy Post-2012: Opportunities and 

Barriers for Foreign Companies in the Russian Market, FCN Working Paper No. 3/2011, Institute for Future 
Energy Consumer Needs and Behavior, RWTH Aachen University, February (revised July 2011). 

 
Westner G., Madlener R. (2011). The Impact of Modified EU ETS Allocation Principles on the Economics of CHP-

Based District Heating Networks. FCN Working Paper No. 4/2011, Institute for Future Energy Consumer 
Needs and Behavior, RWTH Aachen University, February. 

 
Madlener R., Ruschhaupt J. (2011). Modeling the Influence of Network Externalities and Quality on Market Shares 

of Plug-in Hybrid Vehicles, FCN Working Paper No. 5/2011, Institute for Future Energy Consumer Needs 
and Behavior, RWTH Aachen University, March. 

 
Juckenack S., Madlener R. (2011). Optimal Time to Start Serial Production: The Case of the Direct Drive Wind 

Turbine of Siemens Wind Power A/S, FCN Working Paper No. 6/2011, Institute for Future Energy Consumer 
Needs and Behavior, RWTH Aachen University, March. 

 
Madlener R., Sicking S. (2011). Assessing the Economic Potential of Microdrilling in Geothermal Exploration, FCN 

Working Paper No. 7/2011, Institute for Future Energy Consumer Needs and Behavior, RWTH Aachen 
University, April. 

 
Bernstein R., Madlener R. (2011). Responsiveness of Residential Electricity Demand in OECD Countries: A Panel 

Cointegration and Causality Analysis, FCN Working Paper No. 8/2011, Institute for Future Energy Consumer 
Needs and Behavior, RWTH Aachen University, April. 

 
Michelsen C.C., Madlener R. (2011). Homeowners' Preferences for Adopting Residential Heating Systems: A 

Discrete Choice Analysis for Germany, FCN Working Paper No. 9/2011, Institute for Future Energy 
Consumer Needs and Behavior, RWTH Aachen University, May (revised January 2012). 

 
Madlener R., Glensk B., Weber V. (2011). Fuzzy Portfolio Optimization of Onshore Wind Power Plants. FCN 

Working Paper No. 10/2011, Institute for Future Energy Consumer Needs and Behavior, RWTH Aachen 
University, May. 

 
Glensk B., Madlener R. (2011). Portfolio Selection Methods and their Empirical Applicability to Real Assets in 

Energy Markets. FCN Working Paper No. 11/2011, Institute for Future Energy Consumer Needs and 
Behavior, RWTH Aachen University, May. 

 
Kraas B., Schroedter-Homscheidt M., Pulvermüller B., Madlener R. (2011). Economic Assessment of a 

Concentrating Solar Power Forecasting System for Participation in the Spanish Electricity Market, FCN 
Working Paper No. 12/2011, Institute for Future Energy Consumer Needs and Behavior, RWTH Aachen 
University, May. 

 
Stocker A., Großmann A., Madlener R., Wolter M.I.,  (2011). Sustainable Energy Development in Austria Until 

2020: Insights from Applying the Integrated Model “e3.at”, FCN Working Paper No. 13/2011, Institute for 
Future Energy Consumer Needs and Behavior, RWTH Aachen University, July. 

 
Kumbaroğlu G., Madlener R. (2011). Evaluation of Economically Optimal Retrofit Investment Options for Energy 

Savings in Buildings. FCN Working Paper No. 14/2011, Institute for Future Energy Consumer Needs and 
Behavior, RWTH Aachen University, September. 

 
Bernstein R., Madlener R. (2011). Residential Natural Gas Demand Elasticities in OECD Countries: An ARDL 

Bounds Testing Approach, FCN Working Paper No. 15/2011, Institute for Future Energy Consumer Needs 
and Behavior, RWTH Aachen University, October. 

 
Glensk B., Madlener R. (2011). Dynamic Portfolio Selection Methods for Power Generation Assets, FCN Working 

Paper No. 16/2011, Institute for Future Energy Consumer Needs and Behavior, RWTH Aachen University, 
November. 

 
Michelsen C.C., Madlener R. (2011). Homeowners' Motivation to Adopt a Residential Heating System: A Principal 

Component Analysis, FCN Working Paper No. 17/2011, Institute for Future Energy Consumer Needs and 
Behavior, RWTH Aachen University, November (revised January 2013). 

 
Razlaf J., Madlener R. (2011). Performance Measurement of CCS Power Plants Using the Capital Asset Pricing 

Model, FCN Working Paper No. 18/2011, Institute for Future Energy Consumer Needs and Behavior, RWTH 
Aachen University, November. 

 



Himpler S., Madlener R. (2011). Repowering of Wind Turbines: Economics and Optimal Timing, FCN Working 
Paper No. 19/2011, Institute for Future Energy Consumer Needs and Behavior, RWTH Aachen University, 
November (revised July 2012). 

 
Hackbarth A., Madlener R. (2011). Consumer Preferences for Alternative Fuel Vehicles: A Discrete Choice 

Analysis, FCN Working Paper No. 20/2011, Institute for Future Energy Consumer Needs and Behavior, 
RWTH Aachen University, December (revised December 2012). 

 
Heuser B., Madlener R. (2011). Geothermal Heat and Power Generation with Binary Plants: A Two-Factor Real 

Options Analysis, FCN Working Paper No. 21/2011, Institute for Future Energy Consumer Needs and 
Behavior, RWTH Aachen University, December. 

 
Rohlfs W., Madlener R. (2011). Multi-Commodity Real Options Analysis of Power Plant Investments: Discounting 

Endogenous Risk Structures, FCN Working Paper No. 22/2011, Institute for Future Energy Consumer Needs 
and Behavior, RWTH Aachen University, December (revised July 2012). 

 
2010 
 
Lang J., Madlener R. (2010). Relevance of Risk Capital and Margining for the Valuation of Power Plants: Cash 

Requirements for Credit Risk Mitigation, FCN Working Paper No. 1/2010, Institute for Future Energy 
Consumer Needs and Behavior, RWTH Aachen University, February. 

 
Michelsen C.C., Madlener R. (2010). Integrated Theoretical Framework for a Homeowner’s Decision in Favor of 

an Innovative Residential Heating System, FCN Working Paper No. 2/2010, Institute for Future Energy 
Consumer Needs and Behavior, RWTH Aachen University, February. 

 
Harmsen - van Hout M.J.W., Herings P.J.-J., Dellaert B.G.C. (2010). The Structure of Online Consumer 

Communication Networks, FCN Working Paper No. 3/2010, Institute for Future Energy Consumer Needs 
and Behavior, RWTH Aachen University, March. 

 
Madlener R., Neustadt I. (2010). Renewable Energy Policy in the Presence of Innovation: Does Government Pre-

Commitment Matter?, FCN Working Paper No. 4/2010, Institute for Future Energy Consumer Needs and 
Behavior, RWTH Aachen University, April (revised June 2010 and December 2011). 

 
Harmsen - van Hout M.J.W., Dellaert B.G.C., Herings, P.J.-J. (2010). Behavioral Effects in Individual Decisions of 

Network Formation: Complexity Reduces Payoff Orientation and Social Preferences, FCN Working Paper 
No. 5/2010, Institute for Future Energy Consumer Needs and Behavior, RWTH Aachen University, May. 

 
Lohwasser R., Madlener R. (2010). Relating R&D and Investment Policies to CCS Market Diffusion Through Two-

Factor Learning, FCN Working Paper No. 6/2010, Institute for Future Energy Consumer Needs and 
Behavior, RWTH Aachen University, June. 

 
Rohlfs W., Madlener R. (2010). Valuation of CCS-Ready Coal-Fired Power Plants: A Multi-Dimensional Real 

Options Approach, FCN Working Paper No. 7/2010, Institute for Future Energy Consumer Needs and 
Behavior, RWTH Aachen University, July. 

 
Rohlfs W., Madlener R. (2010). Cost Effectiveness of Carbon Capture-Ready Coal Power Plants with Delayed 

Retrofit, FCN Working Paper No. 8/2010, Institute for Future Energy Consumer Needs and Behavior, RWTH 
Aachen University, August (revised December 2010). 

 
Gampert M., Madlener R. (2010). Pan-European Management of Electricity Portfolios: Risks and Opportunities of 

Contract Bundling, FCN Working Paper No. 9/2010, Institute for Future Energy Consumer Needs and 
Behavior, RWTH Aachen University, August. 

 
Glensk B., Madlener R. (2010). Fuzzy Portfolio Optimization for Power Generation Assets, FCN Working Paper 

No. 10/2010, Institute for Future Energy Consumer Needs and Behavior, RWTH Aachen University, August. 
 
Lang J., Madlener R. (2010). Portfolio Optimization for Power Plants: The Impact of Credit Risk Mitigation and 

Margining, FCN Working Paper No. 11/2010, Institute for Future Energy Consumer Needs and Behavior, 
RWTH Aachen University, September. 

 
Westner G., Madlener R. (2010). Investment in New Power Generation Under Uncertainty: Benefits of CHP vs. 

Condensing Plants in a Copula-Based Analysis, FCN Working Paper No. 12/2010, Institute for Future 
Energy Consumer Needs and Behavior, RWTH Aachen University, September. 

 
Bellmann E., Lang J., Madlener R. (2010). Cost Evaluation of Credit Risk Securitization in the Electricity Industry: 

Credit Default Acceptance vs. Margining Costs, FCN Working Paper No. 13/2010, Institute for Future Energy 
Consumer Needs and Behavior, RWTH Aachen University, September (revised May 2011). 



Ernst C.-S., Lunz B., Hackbarth A., Madlener R., Sauer D.-U., Eckstein L. (2010). Optimal Battery Size for Serial 
Plug-in Hybrid Vehicles: A Model-Based Economic Analysis for Germany, FCN Working Paper No. 14/2010, 
Institute for Future Energy Consumer Needs and Behavior, RWTH Aachen University, October (revised June 
2011). 

 
Harmsen - van Hout M.J.W., Herings P.J.-J., Dellaert B.G.C. (2010). Communication Network Formation with Link 

Specificity and Value Transferability, FCN Working Paper No. 15/2010, Institute for Future Energy Consumer 
Needs and Behavior, RWTH Aachen University, November. 

 
Paulun T., Feess E., Madlener R. (2010). Why Higher Price Sensitivity of Consumers May Increase Average 

Prices: An Analysis of the European Electricity Market, FCN Working Paper No. 16/2010, Institute for Future 
Energy Consumer Needs and Behavior, RWTH Aachen University, November. 

 
Madlener R., Glensk B. (2010). Portfolio Impact of New Power Generation Investments of E.ON in Germany, 

Sweden and the UK, FCN Working Paper No. 17/2010, Institute for Future Energy Consumer Needs and 
Behavior, RWTH Aachen University, November. 

 
Ghosh G., Kwasnica A., Shortle J. (2010). A Laboratory Experiment to Compare Two Market Institutions for 

Emissions Trading, FCN Working Paper No. 18/2010, Institute for Future Energy Consumer Needs and 
Behavior, RWTH Aachen University, November. 

 
Bernstein R., Madlener R. (2010). Short- and Long-Run Electricity Demand Elasticities at the Subsectoral Level: A 

Cointegration Analysis for German Manufacturing Industries, FCN Working Paper No. 19/2010, Institute for 
Future Energy Consumer Needs and Behavior, RWTH Aachen University, November. 

 
Mazur C., Madlener R. (2010). Impact of Plug-in Hybrid Electric Vehicles and Charging Regimes on Power 

Generation Costs and Emissions in Germany, FCN Working Paper No. 20/2010, Institute for Future Energy 
Consumer Needs and Behavior, RWTH Aachen University, November. 

 
Madlener R., Stoverink S. (2010). Power Plant Investments in the Turkish Electricity Sector: A Real Options 

Approach Taking into Account Market Liberalization, FCN Working Paper No. 21/2010, Institute for Future 
Energy Consumer Needs and Behavior, RWTH Aachen University, December (revised July 2011). 

 
Melchior T., Madlener R. (2010). Economic Evaluation of IGCC Plants with Hot Gas Cleaning, FCN Working 

Paper No. 22/2010, Institute for Future Energy Consumer Needs and Behavior, RWTH Aachen University, 
December. 

 
Lüschen A., Madlener R. (2010). Economics of Biomass Co-Firing in New Hard Coal Power Plants in Germany, 

FCN Working Paper No. 23/2010, Institute for Future Energy Consumer Needs and Behavior, RWTH 
Aachen University, December (revised July 2012). 

 
Madlener R., Tomm V. (2010). Electricity Consumption of an Ageing Society: Empirical Evidence from a Swiss 

Household Survey, FCN Working Paper No. 24/2010, Institute for Future Energy Consumer Needs and 
Behavior, RWTH Aachen University, December. 

 
Tomm V., Madlener R. (2010). Appliance Endowment and User Behaviour by Age Group: Insights from a Swiss 

Micro-Survey on Residential Electricity Demand, FCN Working Paper No. 25/2010, Institute for Future 
Energy Consumer Needs and Behavior, RWTH Aachen University, December. 

 
Hinrichs H., Madlener R., Pearson P. (2010). Liberalisation of Germany’s Electricity System and the Ways 

Forward of the Unbundling Process: A Historical Perspective and an Outlook, FCN Working Paper No. 
26/2010, Institute for Future Energy Consumer Needs and Behavior, RWTH Aachen University, December. 

 
Achtnicht M. (2010). Do Environmental Benefits Matter? A Choice Experiment Among House Owners in Germany, 

FCN Working Paper No. 27/2010, Institute for Future Energy Consumer Needs and Behavior, RWTH 
Aachen University, December. 

 
2009 
 
Madlener R., Mathar T. (2009). Development Trends and Economics of Concentrating Solar Power Generation 

Technologies: A Comparative Analysis, FCN Working Paper No. 1/2009, Institute for Future Energy 
Consumer Needs and Behavior, RWTH Aachen University, November (revised September 2010). 

 
Madlener R., Latz J. (2009). Centralized and Integrated Decentralized Compressed Air Energy Storage for 

Enhanced Grid Integration of Wind Power, FCN Working Paper No. 2/2009, Institute for Future Energy 
Consumer Needs and Behavior, RWTH Aachen University, November (revised September 2010). 

 



Kraemer C., Madlener R. (2009). Using Fuzzy Real Options Valuation for Assessing Investments in NGCC and 
CCS Energy Conversion Technology, FCN Working Paper No. 3/2009, Institute for Future Energy Consumer 
Needs and Behavior, RWTH Aachen University, November. 

 
Westner G., Madlener R. (2009). Development of Cogeneration in Germany: A Dynamic Portfolio Analysis Based 

on the New Regulatory Framework, FCN Working Paper No. 4/2009, Institute for Future Energy Consumer 
Needs and Behavior, RWTH Aachen University, November (revised March 2010). 

 
Westner G., Madlener R. (2009). The Benefit of Regional Diversification of Cogeneration Investments in Europe: 

A Mean-Variance Portfolio Analysis, FCN Working Paper No. 5/2009, Institute for Future Energy Consumer 
Needs and Behavior, RWTH Aachen University, November (revised March 2010). 

 
Lohwasser R., Madlener R. (2009). Simulation of the European Electricity Market and CCS Development with the 

HECTOR Model, FCN Working Paper No. 6/2009, Institute for Future Energy Consumer Needs and 
Behavior, RWTH Aachen University, November. 

 
Lohwasser R., Madlener R. (2009). Impact of CCS on the Economics of Coal-Fired Power Plants – Why 

Investment Costs Do and Efficiency Doesn’t Matter, FCN Working Paper No. 7/2009, Institute for Future 
Energy Consumer Needs and Behavior, RWTH Aachen University, November. 

 
Holtermann T., Madlener R. (2009). Assessment of the Technological Development and Economic Potential of 

Photobioreactors, FCN Working Paper No. 8/2009, Institute for Future Energy Consumer Needs and 
Behavior, RWTH Aachen University, November. 

 
Ghosh G., Carriazo F. (2009). A Comparison of Three Methods of Estimation in the Context of Spatial Modeling, 

FCN Working Paper No. 9/2009, Institute for Future Energy Consumer Needs and Behavior, RWTH Aachen 
University, November. 

 
Ghosh G., Shortle J. (2009). Water Quality Trading when Nonpoint Pollution Loads are Stochastic, FCN Working 

Paper No. 10/2009, Institute for Future Energy Consumer Needs and Behavior, RWTH Aachen University, 
November. 

 
Ghosh G., Ribaudo M., Shortle J. (2009). Do Baseline Requirements hinder Trades in Water Quality Trading 

Programs?, FCN Working Paper No. 11/2009, Institute for Future Energy Consumer Needs and Behavior, 
RWTH Aachen University, November. 

 
Madlener R., Glensk B., Raymond P. (2009). Investigation of E.ON’s Power Generation Assets by Using Mean-

Variance Portfolio Analysis, FCN Working Paper No. 12/2009, Institute for Future Energy Consumer Needs 
and Behavior, RWTH Aachen University, November. 

 
2008 
 
Madlener R., Neustadt I., Zweifel P. (2008). Promoting Renewable Electricity Generation in Imperfect Markets: 

Price vs. Quantity Policies, FCN Working Paper No. 1/2008, Institute for Future Energy Consumer Needs 
and Behavior, RWTH Aachen University, July (revised November 2011). 

 
Madlener R., Wenk C. (2008). Efficient Investment Portfolios for the Swiss Electricity Supply Sector, FCN Working 

Paper No. 2/2008, Institute for Future Energy Consumer Needs and Behavior, RWTH Aachen University, 
August. 

 
Omann I., Kowalski K., Bohunovsky L., Madlener R., Stagl S. (2008). The Influence of Social Preferences on 

Multi-Criteria Evaluation of Energy Scenarios, FCN Working Paper No. 3/2008, Institute for Future Energy 
Consumer Needs and Behavior, RWTH Aachen University, August.  

 
Bernstein R., Madlener R. (2008). The Impact of Disaggregated ICT Capital on Electricity Intensity of Production: 

Econometric Analysis of Major European Industries, FCN Working Paper No. 4/2008, Institute for Future 
Energy Consumer Needs and Behavior, RWTH Aachen University, September. 

 
Erber G., Madlener R. (2008). Impact of ICT and Human Skills on the European Financial Intermediation Sector, 

FCN Working Paper No. 5/2008, Institute for Future Energy Consumer Needs and Behavior, RWTH Aachen 
University, September. 

 
FCN Working Papers are free of charge. They can mostly be downloaded in pdf format from the FCN / E.ON ERC 
Website (www.eonerc.rwth-aachen.de/fcn) and the SSRN Website (www.ssrn.com), respectively. Alternatively, 
they may also be ordered as hardcopies from Ms Sabine Schill (Phone: +49 (0) 241-80 49820, 
E-mail: post_fcn@eonerc.rwth-aachen.de), RWTH Aachen University, Institute for Future Energy Consumer 
Needs and Behavior (FCN), Chair of Energy Economics and Management (Prof. Dr. Reinhard Madlener), 
Mathieustrasse 10, 52074 Aachen, Germany. 

http://www.eonerc.rwth-aachen.de/fcn
http://www.ssrn.com/
mailto:post_fcn@eonerc.rwth-aachen.de

	FCN_WP01_2014_Cover_R1
	DID_Wind_Paper_11102014_R1
	FCN_WP01_2014_PublikationList_R1

